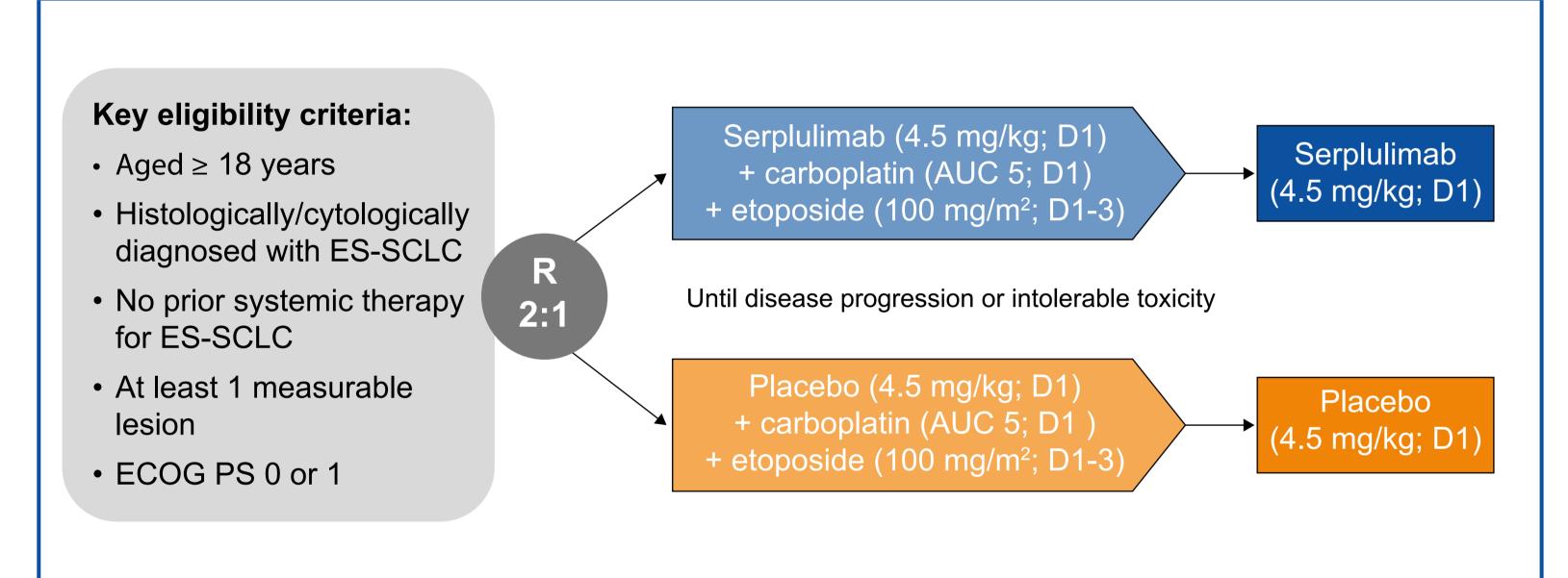
# Smoking-Related Genomic Mutation Patterns in Patients With Small Cell Lung Cancer Treated in the ASTRUM-005 Study

# Ying Cheng<sup>1</sup>, Liang Han<sup>2</sup>, Lin Wu<sup>3</sup>, Jun Chen<sup>4</sup>, Hongmei Sun<sup>5</sup>, Guilan Wen<sup>6</sup>, Yinghua Ji<sup>7</sup>, Mikhail Dvorkin<sup>8</sup>, Jianhua Shi<sup>9</sup>, Mingming Jia<sup>10</sup>, Xinyi Yang<sup>10</sup>, Stanislav Lechpammer<sup>11</sup>, Mengkai Chen<sup>10</sup>, Fang Yang<sup>10</sup>, Chen Hu<sup>10</sup>, Qingyu Wang<sup>10</sup>, Chen Ling<sup>10</sup>, Jing Li<sup>10</sup>, Yongqiang Shan<sup>10</sup>, Jun Zhu<sup>10</sup>

<sup>1</sup>Jilin Cancer Hospital, Changsha, China; <sup>3</sup>Thoracic Medical University General Hospital, Tianjin, China; <sup>3</sup>Jiamusi Cancer and Tuberculosis Hospital, Jiamusi, China; <sup>4</sup>Tianjin Medical University General Hospital, Tianjin, China; <sup>3</sup>Thoracic Medical Oncology Department, Hunan Cancer Hospital, Changsha, China; <sup>4</sup>Tianjin, China; <sup>4</sup> <sup>6</sup>The First Affiliated Hospital of Nanchang University, Nanchang, China; <sup>8</sup>Budgetary Healthcare Institution of Omsk Region "Clinical Oncology Dispensary", Omsk, Russian Federation; <sup>9</sup>Linyi Cancer Hospital, Linyi, China; <sup>10</sup>Shanghai Henlius Biotech, Inc., Shanghai, China; <sup>10</sup>Shanghai Henlius Biotech, Inc., Shanghai, China; <sup>10</sup>Shanghai, <sup>10</sup>Shanghai, <sup>10</sup>Shanghai, <sup>10</sup>Shanghai, <sup>10</sup>Shanghai, <sup>10</sup>Shanghai, <sup>10</sup>Shanghai, <sup>10</sup>Shanghai, <sup>10</sup>Shang <sup>11</sup>Fosun Pharma USA Inc., Princeton, USA


#### Background

- Transversion mutations (interchanges between purine and pyrimidine) occur predominately in tobacco smokers, whereas transition mutations (interchanges within purine or pyrimidine) are more frequent in non-smokers in smoking-associated cancers.<sup>1</sup>
- In non-small cell lung cancer (NSCLC), several studies have consistently drawn an association between tobacco-smoking history and genetic alterations in cancer-related pathways.<sup>1,2</sup>
- Although small cell lung cancer (SCLC) is strongly associated with tobacco smoking, only a few comparison studies on tobacco-smoking-related mutation signatures were performed with inconsistent results due to the lack of non-smokers in SCLC cohorts.<sup>3,4</sup>
- Here, we report the results of mutation signature analyses for patients with SCLC in the ASTRUM-005 trial and the relation of their tobacco-smoking history.

#### Methods

• ASTRUM-005 was a randomized, double-blind, placebo-controlled, global, phase 3 trial in patients with extensive-stage SCLC (Figure 1).

#### Figure 1. Study design



AUC, area under curve; D, day; ECOG PS, Eastern Cooperative Oncology Group performance status; ES-SCLC, extensive-stage small cell lung cancer R, randomization

#### Smoking signature analysis

- Genomic mutations in 302 patients with available baseline tumor samples were assessed by the Med1CDx panel, which included exon regions of 601 genes.
- Two bioinformatic methods, the transversion/transition ratio (TTR) method and the Catalogue of Somatic Mutations in Cancer (COSMIC) Signature 4 method, were applied to analyze tobacco-smoking-related signature.
- For the TTR method:
- An R Bioconductor package, Maftools, was used to calculate the fraction of transversion and transition in each sample. TTR value was then defined as the transversion fraction divided by the transition fraction in each sample.<sup>3,5</sup>
- Specifically, Maftools classified single nucleotide variants (SNVs) into 6 different transition and transversion events (C>A:G>T, C>G:G>C, C>T:G>A, T>A:A>T, T>C:A>G, T>G:A>C).
- Synonymous SNVs were included in these analyses.
- For the Signature 4 method:
- Mutational signatures were extracted and the contributions of tobacco-smoking-related signatures (Signature 4), annotated by the COSMIC, from the genomic mutation panels of each patient were estimated.<sup>6</sup>
- R package "deconstructSigs" was used to calculate the contribution of the mutation.<sup>7</sup>
- Both methods were validated on targeted panel sequencing from a published NSCLC data set. Both methods were able to distinguish smokers from non-smokers in NSCLC.<sup>8</sup>

#### **Statistical analysis**

- For progression-free survival (PFS) and overall survival (OS), the median was calculated from product-limit (Kaplan–Meier) estimates, while n was the number of patients in each subgroup category. The hazard ratio (HR) and its 95% confidence interval (CI) were estimated using an unstratified Cox proportional hazards model; Efron's method was used to handle ties.
- For the analyses of genomic-based smoking signatures, the Wilcoxon test was used to calculate the difference among patients with different smoking histories. The clinical data cutoff date was June 13, 2022.

#### Results

#### **Baseline characteristics in smoking groups**

- Patients in the SCLC cohort (N = 302) were grouped based on their smoking history;
- 23% were current smokers, 55% former smokers, and 22% never smokers.
- Baseline patient characteristics are summarized in Table 1.

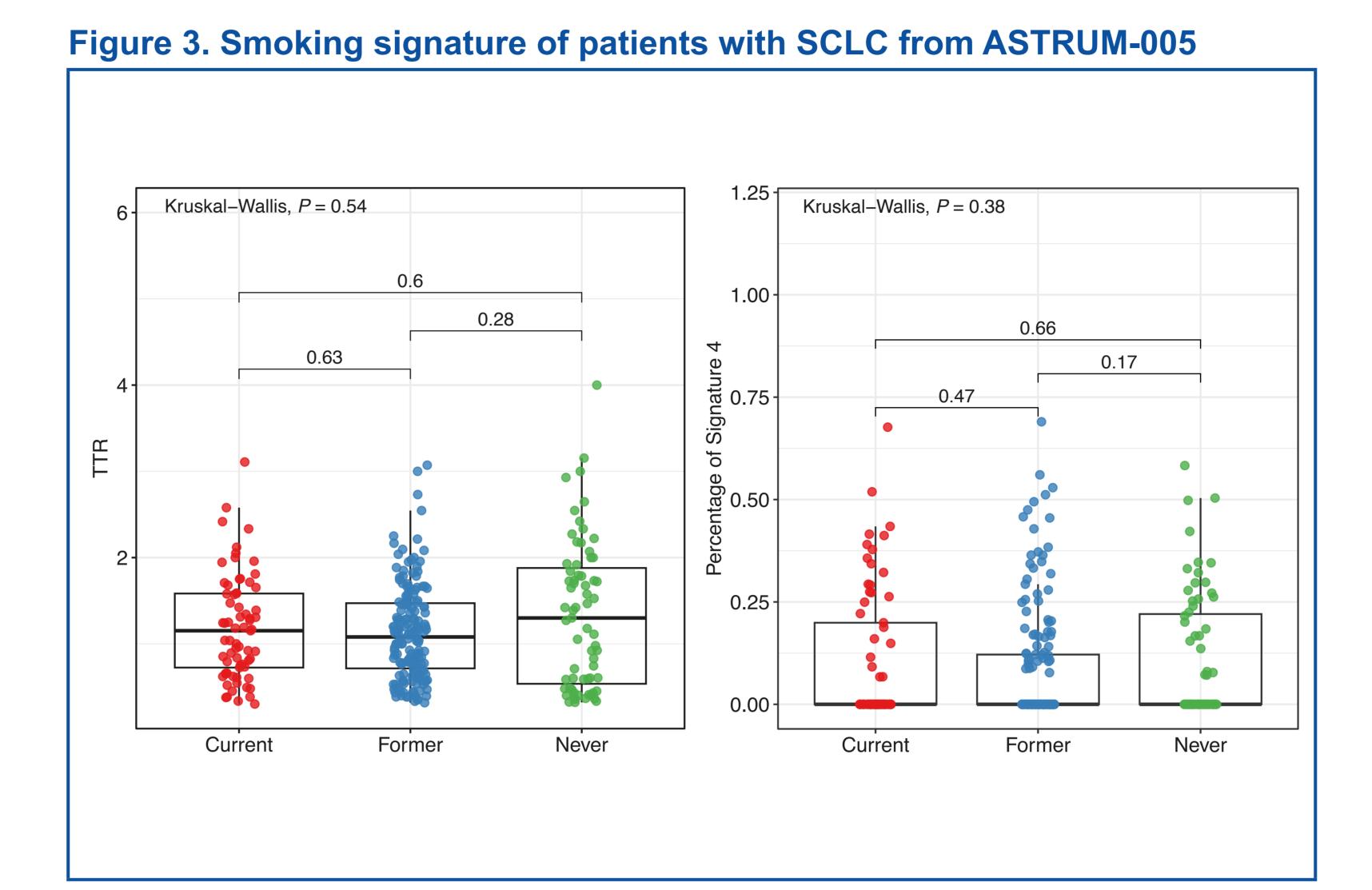
#### Table 1. Baseline characteristics in smoking groups from ASTRUM-005

|                               | Current<br>(n = 69) | Former<br>(n = 166) | Never<br>(n = 67)  | All<br>(N = 302)    |
|-------------------------------|---------------------|---------------------|--------------------|---------------------|
| Age in years, mean (SD)       | 60 (9.4)            | 62 (8.3)            | 60 (9.5)           | 61 (8.9)            |
| Sex, n (%)<br>Male<br>Female  | 67 (97)<br>2 (3)    | 153 (92)<br>13 (8)  | 23 (34)<br>44 (66) | 243 (81)<br>59 (20) |
| Race, n (%)<br>Asian<br>White | 37 (54)<br>32 (46)  | 138 (83)<br>28 (17) | 62 (93)<br>5 (8)   | 237 (79)<br>65 (22) |

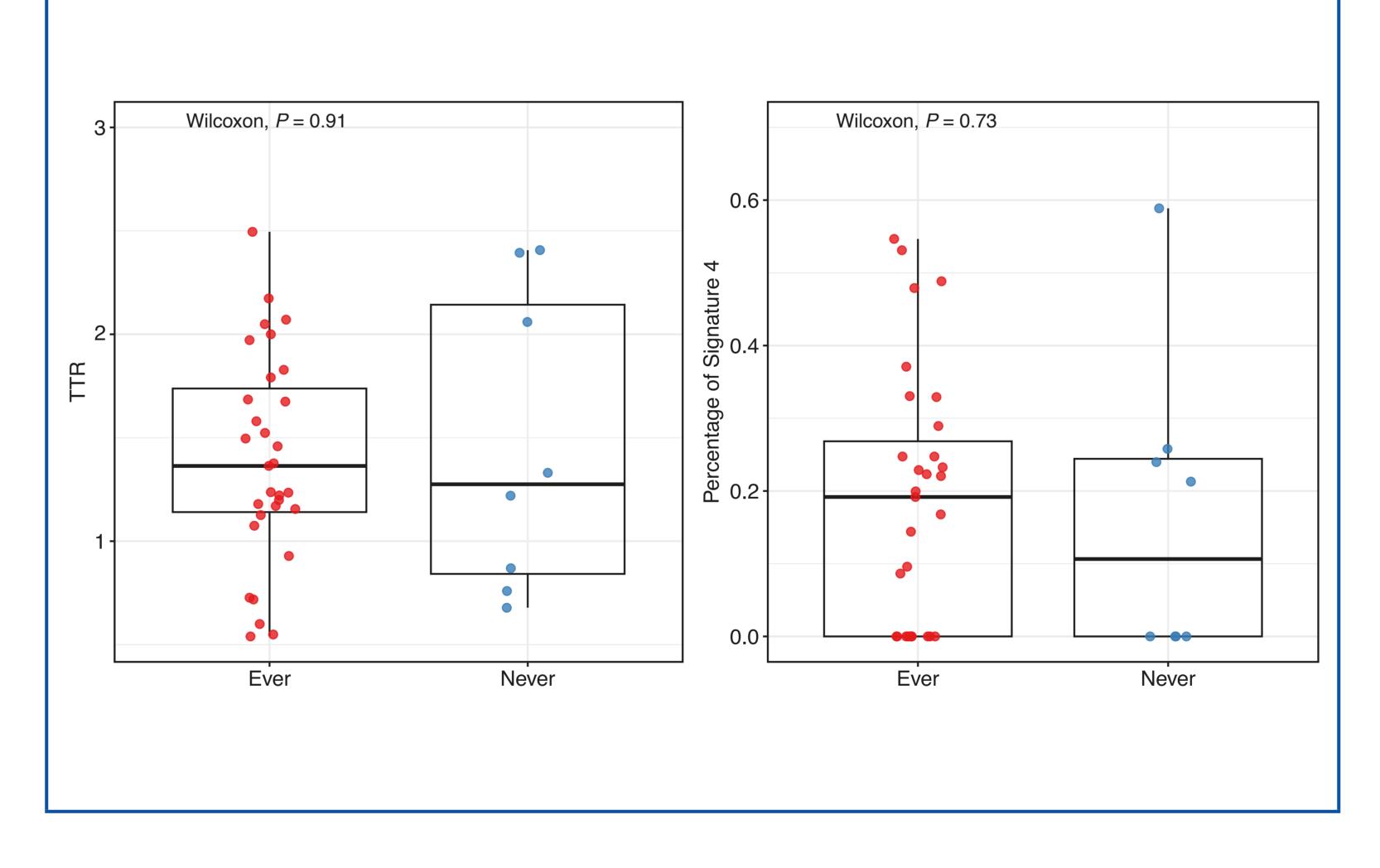
SD, standard deviation.

- Mutation analysis demonstrated that the most frequently mutated genes were TP53 (90% and 91%), *RB1* (68% and 69%), and *LRP1B* (31% and 28%) in current and former smokers versus never smokers, respectively (**Figure 2**).
- Differential analysis on the mutated genes demonstrated that smokers and non-smokers have similar top mutated genes, with never smokers having more mutation in EGFR, DMD, MED12, MTOR, NOTCH1, REL, PGR, DNMT1, GRM3, KMT2A, and CD22 (Figure 2).

#### Figure 2. Mutation differences by smoking history


|               | Top 2              | 0 genes in           | different g  | groups             |                      |                                                                        |  |  |
|---------------|--------------------|----------------------|--------------|--------------------|----------------------|------------------------------------------------------------------------|--|--|
| Ever          | (n = 235,          | 78%)                 | Neve         | er (n = 67,        | 22%)                 |                                                                        |  |  |
| Gene<br>name  | Mutated<br>samples | Mutation<br>rate (%) | Gene<br>name | Mutated<br>samples | Mutation<br>rate (%) | E I                                                                    |  |  |
| TP53          | 211                | 89.79                | TP53         | 61                 | 91.04                | Never (n = 67) versus Ever (n = 235) <b>Never Ever OR <i>P</i> val</b> |  |  |
| RB1           | 160                | 68.09                | RB1          | 46                 | 68.66                | ← EGFR 8 5 0.162 **<br>← DMD 18 27 0.355 **                            |  |  |
| LRP1B         | 72                 | 30.64                | LRP1B        | 19                 | 28.36                | → MED12 8 7 0.228 **                                                   |  |  |
| KMT2D         | 50                 | 21.28                | DMD          | 18                 | 26.87                |                                                                        |  |  |
| SPTA1         | 39                 | 16.6                 | KMT2D        | 18                 | 26.87                | → PGR 6 6 0.268 *                                                      |  |  |
| CREBBP        | 37                 | 15.74                | NOTCH1       | 16                 | 23.88                | • DNMT1 8 10 0.329 *   • GRM3 6 7 0.314 *                              |  |  |
| FAT1          | 36                 | 15.32                | SPTA1        | 14                 | 20.9                 | • KMT2A 6 7 0.314 *   • CD22 5 5 0.271 *                               |  |  |
| KMT2C         | 33                 | 14.04                | KMT2C        | 13                 | 19.4                 | 0 1 2 3                                                                |  |  |
| TP73          | 29                 | 12.34                | REL          | 12                 | 17.91                | Odds ratio with 95% CI<br>(1 = no effect, < 1 Never has more mutants)  |  |  |
| DMD           | 29                 | 12.34                | TP73         | 12                 | 17.91                |                                                                        |  |  |
| NOTCH1        | 28                 | 11.91                | FAT1         | 10                 | 14.93                |                                                                        |  |  |
| AR            | 26                 | 11.06                | ROS1         | 9                  | 13.43                |                                                                        |  |  |
| PTEN          | 24                 | 10.21                | DNMT1        | 8                  | 11.94                |                                                                        |  |  |
| <i>NOTCH3</i> | 22                 | 9.36                 | EGFR         | 8                  | 11.94                |                                                                        |  |  |
| NOTCH2        | 21                 | 8.94                 | PTPRD        | 8                  | 11.94                |                                                                        |  |  |
| PTPRD         | 20                 | 8.51                 | MED12        | 8                  | 11.94                |                                                                        |  |  |
| GRIN2A        | 20                 | 8.51                 | PRKDC        | 8                  | 11.94                |                                                                        |  |  |
| PREX2         | 20                 | 8.51                 | ZFHX3        | 7                  | 10.45                |                                                                        |  |  |
| PRKDC         | 19                 | 8.09                 | ARID1A       | 6                  | 8.96                 |                                                                        |  |  |
| EPHA5         | 19                 | 8.09                 | GRIN2A       | 6                  | 8.96                 |                                                                        |  |  |

OR, odds ratio. \*P < 0.05; \*\*P < 0.01 OR < 1 means more mutants are observed in never smoke


OR > 1 means more mutants are observed in ever smokers

#### Smoking signatures in patients with SCLC

- No significant differences in smoking signatures were found between groups with different smoking histories using both methods (TTR: P = 0.54; Signature 4: P = 0.38) (Figure 3).
- Findings were validated by applying the same analyses on 2 cohorts' data sets profiled with whole exome sequencing from published studies.<sup>8,9</sup>
- In 120 samples from 40 patients with SCLC, no correlation between mutation pattern and smoking history in either method was observed (TTR: P = 0.91; Signature 4: P = 0.70; Figure 4).<sup>9</sup>
- We observed similar results in another independent data set with whole exome sequencing performed on 110 samples from patients with SCLC (data not shown).<sup>10</sup>



#### Figure 4. Smoking signature of patients with SCLC from a public database



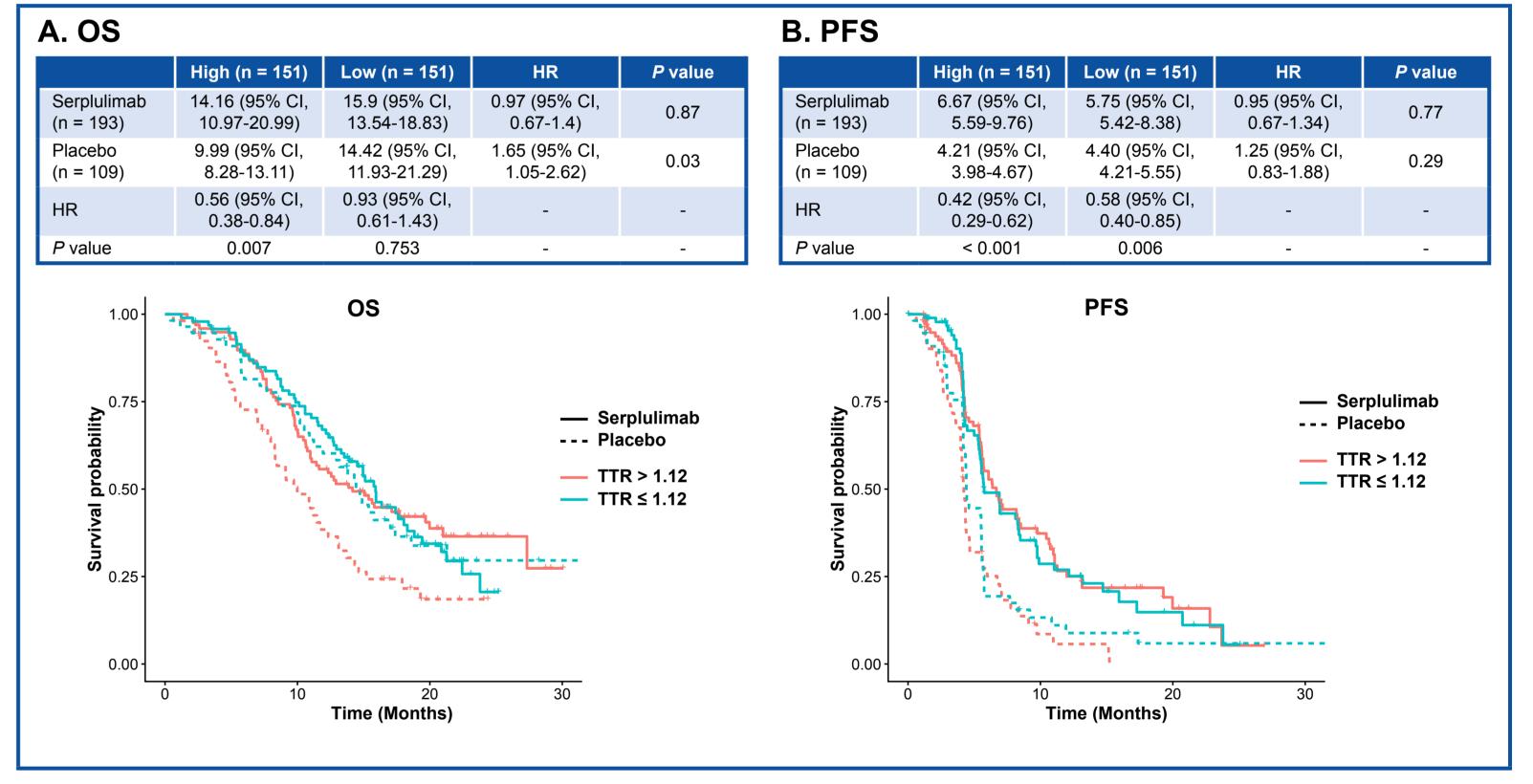
- Patients were further grouped into high/low TTR groups using the median TTR of 1.12 as the cutoff value.
- The mutation analysis showed that *REL* was more frequently mutated in non-smokers (*P* < 0.001) (**Figure 5**).
- Higher TTR resulted in shorter median OS (HR [95% CI], 1.65 [1.05-2.62]; P = 0.03) for patients who only received chemotherapy, while both the high and low TTR groups gained similar benefits for patients who received serplulimab plus chemotherapy (HR [95% CI], 0.97 [0.67-1.4]; P = 0.87) (Figure 6A).
- Patients in both treatment groups (chemotherapy and serplulimab plus chemotherapy) showed similar benefits in PFS, regardless of the TTR (HR [95% CI], 1.25 [0.83-1.88]; P = 0.29 and 0.95 [0.67-1.34]; P = 0.77, respectively) (Figure 6B).

#### References

- 1. Govindan R, et al. Cell. 2012;150:1121-1134.
- 2. Wang X, et al. *Cancer Res.* 2021;81:2566-2573.
- 3. Song K, et al. Transl Lung Cancer Res. 2018;7:439-449.
- 4. Tseng JS, et al. JAMA Netw Open. 2022;5:e224830.
- 5. Mayakonda A, et al. Genome Res. 2018;28:1747-1756.
- 6. Alexandrov LB, et al. Nature. 2013;500:415-421.
- 7. Rosenthal R, et al. Genome Biol. 2016;17:31.
- 8. Rizvi H, et al. J Clin Oncol. 2018;36:1645.
- 9. Zhou H, et al. Nat Commun. 2021;12:5431.
- 10. George J, et al. Nature. 2015;524:47-53.

### Figure 5. Mutation differences by high/low TTR

| Top 20 genes in different groups |                    |                      |  |                   |                    |          |  |
|----------------------------------|--------------------|----------------------|--|-------------------|--------------------|----------|--|
| High (n = 151, 50%)              |                    |                      |  | Low (n = 151, 50% |                    |          |  |
| ne<br>ne                         | Mutated<br>samples | Mutation<br>rate (%) |  | Gene<br>name      | Mutated<br>samples | Mı<br>ra |  |
| 53                               | 136                | 90.07                |  | TP53              | 136                | Ę        |  |


| TP53   | 136 | 90.07 | TP53   | 136 | 90.07 |
|--------|-----|-------|--------|-----|-------|
| RB1    | 98  | 64.9  | RB1    | 108 | 71.52 |
| LRP1B  | 43  | 28.48 | LRP1B  | 48  | 31.79 |
| KMT2D  | 42  | 27.81 | REL    | 28  | 18.54 |
| SPTA1  | 31  | 20.53 | KMT2D  | 26  | 17.22 |
| FAT1   | 24  | 15.89 | DMD    | 24  | 15.89 |
| CREBBP | 24  | 15.89 | NOTCH1 | 23  | 15.23 |
| TP73   | 24  | 15.89 | FAT1   | 22  | 14.57 |
| KMT2C  | 24  | 15.89 | KMT2C  | 22  | 14.57 |
| DMD    | 23  | 15.23 | SPTA1  | 22  | 14.57 |
| NOTCH1 | 21  | 13.91 | AR     | 18  | 11.92 |
| PTEN   | 19  | 12.58 | CREBBP | 17  | 11.26 |
| NOTCH2 | 17  | 11.26 | GRIN2A | 17  | 11.26 |
| PTPRD  | 16  | 10.6  | ROS1   | 17  | 11.26 |
| NOTCH3 | 16  | 10.6  | TP73   | 17  | 11.26 |
| PREX2  | 16  | 10.6  | DNMT1  | 15  | 9.93  |
| COL5A1 | 15  | 9.93  | MST1   | 13  | 8.61  |
| PRKDC  | 15  | 9.93  | HLA-B  | 12  | 7.95  |
| ERBB4  | 13  | 8.61  | PRKDC  | 12  | 7.95  |
| PIK3CG | 13  | 8.61  | PTPRD  | 12  | 7.95  |

| Differential mutated genes<br>of high/low                               |                            |                    |           |        |       |                |  |  |  |
|-------------------------------------------------------------------------|----------------------------|--------------------|-----------|--------|-------|----------------|--|--|--|
| TTR_low                                                                 | (n = 151) versus TTR_high  | (n = 151) <b>T</b> | rr_low tt | R_high | OR    | <i>P</i> value |  |  |  |
| •                                                                       |                            | REL                | 26        | 2      | 0.065 | ***            |  |  |  |
| -                                                                       | -<br>-<br>-<br>-<br>-<br>- | DNMT1              | 15        | 3      | 0.185 | **             |  |  |  |
|                                                                         | >                          | JAK3               | 0         | 8      | Inf   | **             |  |  |  |
| •                                                                       |                            | MDC1               | 7         | 0      | 0     | *              |  |  |  |
|                                                                         |                            | PREX2              | 4         | 14     | 3.741 | *              |  |  |  |
|                                                                         |                            | KLHL6              | 1         | 8      | 8.346 | *              |  |  |  |
|                                                                         | •>                         | KMT2D              | 26        | 42     | 1.849 | *              |  |  |  |
| 0 .                                                                     | 1 2 3                      |                    |           |        |       |                |  |  |  |
| Odds ratio with 95% CI<br>(1 = no effect, < 1 TTR_low has more mutants) |                            |                    |           |        |       |                |  |  |  |

OR. odds ratio. \*P < 0.05: \*\*P < 0.01: \*\*\*P < 0.001

< 1 means more mutants are observed in the low TTR group OR > 1 means more mutants are observed in the high TTR group

#### Figure 6. Clinical outcome of ASTRUM-005 by high/low TTR



## Conclusions

- In our ASTRUM-005 study, 67 (22%) patients with SCLC had never smoked.
- Unlike what was observed with NSCLC, patients with SCLC from our study showed similar tobacco-smoking-related genomic mutation patterns, regardless of their smoking status.
- Patients with SCLC who have never smoked may develop transversion mutations from other sources unrelated to direct tobacco exposure.
- Patients with high TTR might gain less benefit from chemotherapy, suggesting mutations in SCLC might be predictive biomarkers for certain therapies.

### Acknowledgment and Disclosures

- The authors would like to acknowledge participants in this study and their families, other investigators and staff at all clinical sites, and the members of the Independent Data Monitoring Committee.
- This study was funded by Shanghai Henlius Biotech, Inc. Editorial support was provided by Parexel, and funded by Shanghai Henlius Biotech, Inc.
- Ying Cheng declares no conflict of interest.